Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2001 Feb 1;166(3):1524-30.

Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice.

Author information

1
Department of Immunology, Imperial College of Science and Medicine at Chelsea and Westminster Hospital, London, United Kingdom. d.andrew@ic.ac.uk

Abstract

Thymic atrophy is an age-associated decline in commitment to the T cell lineage considered to be associated with defective TCR beta-chain rearrangement. Both IL-7 and stem cell factor (SCF) have dominant roles at this stage of triple negative (TN) thymocyte development. Because there is no age-associated decrease in the number of CD44(+)CD25(-)CD3(-)CD4(-)CD8(-) cells, this study investigated whether alterations in apoptosis within the TN pathway accounted for diminishing thymocyte numbers with age. Here we show significant age-associated increases in apoptotic TN thymocytes, specifically within CD44(+)CD25(+) and CD44(-)CD25(+) subpopulations, known to be the location of TCR beta-chain rearrangement. IL-7 added to TN cultures established from old mice significantly both reduces apoptosis and increases the percentage of live cells within CD44(+)CD25(+) and CD44(-)CD25(+) subpopulations after 24 h, with prosurvival effects remaining after 5 days. SCF failed to demonstrate prosurvival effects in old or young cultures, and IL-7 and SCF together did not improve upon IL-7 alone. IL-7R expression did not decline with age, ruling out the possibility that the age-associated increase in apoptosis was attributed to reduced IL-7R expression. Compared with PBS, treatment of old mice with IL-7 produced significant increases in live TN cells. By comparison, treatment with SCF failed to increase live TN numbers, and IL-7 and SCF together failed to significantly improve thymopoiesis above that shown by IL-7 alone. Thus, treatment with IL-7 alone can reverse the age-associated defect in TN thymocyte development revealed by in vitro studies to be located at the stages of TCR beta-chain rearrangement.

PMID:
11160192
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center