Format

Send to

Choose Destination
See comment in PubMed Commons below
Infect Immun. 2001 Feb;69(2):1181-4.

Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization.

Author information

  • 1Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2605, USA.

Abstract

Helicobacter pylori VacA is a secreted protein toxin that forms channels in lipid bilayers and induces multiple structural and functional alterations in eukaryotic cells. A unique hydrophobic segment at the amino terminus of VacA contains three tandem repeats of a GxxxG motif that is characteristic of transmembrane dimerization sequences. To examine functional properties of this region, we expressed and analyzed ToxR-VacA-maltose binding protein fusions using the TOXCAT system, which was recently developed by W. P. Russ and D. M. Engelman (Proc. Natl. Acad. Sci. USA 96:863-868, 1999) to study transmembrane helix-helix associations in a natural membrane environment. A wild-type VacA hydrophobic region mediated insertion of the fusion protein into the inner membrane of Escherichia coli and mediated protein dimerization. A fusion protein containing a mutant VacA hydrophobic region (in which glycine 14 of VacA was replaced by alanine) also inserted into the inner membrane but dimerized significantly less efficiently than the fusion protein containing the wild-type VacA sequence. Based on these results, we speculate that the wild-type VacA amino-terminal hydrophobic region contributes to oligomerization of the toxin within membranes of eukaryotic cells.

PMID:
11160018
PMCID:
PMC98002
DOI:
10.1128/IAI.69.2.1181-1184.2001
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center