Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1261-6. Epub 2001 Jan 23.

Contribution of cytoskeleton to the internalization of AMPA receptors.

Author information

1
Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, CA 94143, USA.

Abstract

Trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) at synapses has been suggested to play an important role in the expression of synaptic plasticity. Both the regulated and the constitutive trafficking of synaptic AMPARs are thought to involve the insertion and removal of receptors by means of an exocytotic and endocytotic process, respectively. In contrast, N-methyl-d-aspartate (NMDA) receptors (NMDARs), which are colocalized with AMPARs at excitatory synapses, appear to be much less dynamic. Here, we present evidence supporting the idea that synaptic AMPARs turn over through a constitutive endocytotic process and that glutamate application greatly enhances this turnover of AMPARs. The glutamate-induced internalization of AMPARs requires a rise in postsynaptic Ca(2+). The AMPAR internalization is mimicked by latrunculin A, a drug that selectively depolymerizes actin and is blocked by jasplakinolide, a drug which stabilizes actin filaments. The rate of endocytosis is not altered by glutamate application, whereas a clear enhancement is observed with insulin application. We propose a model in which the glutamate-induced dissociation of AMPARs from their anchor on the postsynaptic membrane involves actin depolymerization, which allows the released AMPARs to segregate from the NMDARs and diffuse to a presumably perisynaptic site, where they become available to an endocytotic machinery and are selectively internalized.

PMID:
11158627
PMCID:
PMC14742
DOI:
10.1073/pnas.031573798
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center