Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2001 Feb;67(2):799-807.

Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream.

Author information

  • 1Institute of Ecology and Conservation Biology, University of Vienna, A-1090 Vienna, Austria.


We used in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes concurrently with measurements of bacterial carbon production, biomass, and extracellular polymeric substances (EPS) to describe the bacterial community in sediments along a glacial stream. The abundance of sediment-associated Archaea, as detected with the ARCH915 probe, decreased downstream of the glacier snout, and a major storm increased their relative abundance by a factor of 5.5 to 7.9. Bacteria of the Cytophaga-Flavobacterium group were also sixfold to eightfold more abundant in the storm aftermath. Furthermore, elevated numbers of Archaea and members of the Cytophaga-Flavobacterium group characterized the phylogenetic composition of the supraglacial ice community. We postulate that glacial meltwaters constitute a possible source of allochthonous bacteria to the stream biofilms. Although stream water temperature increased dramatically from the glacier snout along the stream (3.5 km), sediment chlorophyll a was the best predictor for bacterial carbon production and specific growth rates along the stream. Concomitant with an increase in sediment chlorophyll a, the EPS carbohydrate-to-bacterial-cell ratio declined 11- to 15-fold along the stream prior to the storm, which is indicative of a larger biofilm matrix in upstream reaches. We assume that a larger biofilm matrix is required to assure prolonged transient storage and enzymatic processing of allochthonous macromolecules, which are likely the major substrate for microbial heterotrophs. Bacteria of the Cytophaga-Flavobacterium cluster, which are well known to degrade complex macromolecules, were most abundant in these stream reaches. Downstream, higher algal biomass continuously supplies heterotrophs with easily available exudates, therefore making a larger matrix unnecessary. As a result, bacterial carbon production and specific growth rates were higher in downstream reaches.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center