Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2001 Feb 1;21(3):999-1006.

Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception.

Author information

Departments of Preventive Science, Neuroscience, and Psychiatry, University of Minnesota, Minneapolis, Minnesota 55455, USA.


The endothelins (ETs) are peptides that have a diverse array of functions mediated by two receptor subtypes, the endothelin A receptor (ET(A)R) and the endothelin B receptor (ET(B)R). Pharmacological studies have suggested that in peripheral tissues, ET(A)R expression may play a role in signaling acute or neuropathic pain, whereas ET(B)R expression may be involved in the transmission of chronic inflammatory pain. To begin to define the mechanisms by which ET can drive nociceptive signaling, autoradiography and immunohistochemistry were used to examine the distribution of ET(A)R and ET(B)R in dorsal root ganglia (DRG) and peripheral nerve of the rat, rabbit, and monkey. In DRG and peripheral nerve, ET(A)R-immunoreactivity was present in a subset of small-sized peptidergic and nonpeptidergic sensory neurons and their axons and to a lesser extent in a subset of medium-sized sensory neurons. However, ET(B)R-immunoreactivity was not seen in DRG neurons or axons but rather in DRG satellite cells and nonmyelinating ensheathing Schwann cells. Thus, when ETs are released in peripheral tissues, they could act directly on ET(A)R-expressing sensory neurons and on ET(B)R-expressing DRG satellite cells or nonmyelinating Schwann cells. These data indicate that ETs can have direct, nociceptive effects on the peripheral sensory nervous system and that peripheral glia may be directly involved in signaling nociceptive events in peripheral tissues.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center