Send to

Choose Destination
Naunyn Schmiedebergs Arch Pharmacol. 2000 Dec;362(6):489-96.

N-desethylamiodarone modulates intracellular calcium concentration in endothelial cells.

Author information

Institut f├╝r Pharmakologie und Toxikologie, Universit├Ątsklinikum Carl Gustav Carus, TU Dresden, Germany.


The main in-vivo metabolite of amiodarone, N-desethylamiodarone (DEAM), possesses clinically relevant class-II antiarrhythmic and vasodilator activities. Vasodilation by DEAM is endothelium dependent and involves a sustained and biphasic increase in cytosolic free Ca2+ concentration ([Ca2+]i). The aims of this study were to explore the mechanisms mediating the DEAM-induced increase in [Ca2+]i in endothelial cells and to determine whether this increase in [Ca2+]i was associated with altered cell proliferation. Cultured bovine aortic endothelial cells were loaded with the Ca2+-sensitive fluorescent dye Fura-2/AM, and [Ca2+]i measured spectrofluorimetrically. DEAM increased [Ca2+]i concentration dependently (EC50 approximately 6 microM) both in the presence and absence of extracellular Ca2+. In the presence of extracellular Ca2+, the response of [Ca2+]i to DEAM (10 microM) consisted of an initial rise to a plateau followed by a second increase to micromolar levels. The initial plateau was reduced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (200 nM) and by the antioxidant ascorbic acid (100 microM). The initial rate of rise in [Ca2+]i was decreased by blocking mitochondrial Ca2+ release with cyclosporine A (1 microM). Under Ca2+-free conditions, the response of [Ca2+]i to DEAM (10 microM) was also biphasic, consisting of an initial transient peak and a second slow increase. When extracellular Ca2+ was restored, [Ca2+]i rose to micromolar concentrations. The initial peak was abolished by thapsigargin, but not altered by ascorbic acid or cyclosporine A. Both the second [Ca2+]i increase and that due to restoring extracellular Ca2+ were reduced by ascorbic acid but not affected by thapsigargin or cyclosporine A. The DEAM-induced generation of free radicals and sustained increase in [Ca2+]i might alter cell proliferation and endothelial cell proliferation was indeed concentration-dependently inhibited by DEAM (IC50 approximately 2.5 microM). In conclusion, the DEAM-induced [Ca2+]i increase in endothelial cells is due to Ca2+ influx from the extracellular space and to Ca2+ release from endoplasmic reticulum and mitochondria and involves enhanced generation of free radicals.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center