Send to

Choose Destination
Immunol Rev. 2000 Oct;177:112-26.

Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands.

Author information

Wohl Virion Centre, Department of Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, UK.


Human and simian immunodeficiency viruses (HIV and SIV) require a seven transmembrane chemokine (7TM) receptor in addition to CD4 for efficient entry into cells. CCR5 and CXCR4 act as major co-receptors for non-syncytium-inducing and syncytium-inducing strains respectively. We have examined the co-receptor requirement for HIV-1 infection of cells of macrophage lineage. Both CCR5 and CXCR4 can operate as functional co-receptors for infection in these cell types. Other co-receptors utilised by multi-co-receptor-using strains of HIV-1, including CCR3 and STRL33, were not used for macrophage infection. HIV-2 and SIV strains, however, can replicate in both peripheral blood mononuclear cells (PBMCs) and other primary cell types such as fibroblasts independently of CCR5 or CXCR4. HIV co-receptors, particularly CCR5, will be major targets for new therapeutics in this decade. We have therefore investigated different chemokines and derivatives that bind co-receptors for their capacity to inhibit HIV infection. These included derivatives of a CCR5 ligand, RANTES, with modified N-termini as well as Kaposi's sarcoma-associated herpesvirus-encoded chemokines that bind a wide range of co-receptors, including CCR5, CXCR4, CCR3 and CCR8, as well as the orphan 7TM receptors GPR1 and STRL33. One compound, aminooxypentane or AOP-RANTES, was a particularly potent inhibitor of HIV infection on PBMCs, macrophages and CCR5+ cell lines and demonstrated the great promise of therapeutic strategies aimed at CCR5.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center