Send to

Choose Destination
J Comp Neurol. 2001 Feb 5;430(2):264-81.

Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys.

Author information

Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305-5410, USA.


Little is known about the morphological characteristics and intracellular electrophysiological properties of neurons in the primate hippocampus and dentate gyrus. We have therefore begun a program of studies using intracellular recording and biocytin labeling in hippocampal slices from macaque monkeys. In the current study, we investigated mossy cells and proximal CA3 pyramidal cells. As in rats, macaque mossy cells display fundamentally different traits than proximal CA3 pyramidal cells. Interestingly, macaque mossy cells and CA3 pyramidal neurons display some morphological differences from those in rats. Macaque monkey mossy cells extend more dendrites into the molecular layer of the dentate gyrus, have more elaborate thorny excrescences on their proximal dendrites, and project more axon collaterals into the CA3 region. In macaques, three types of proximal CA3 pyramidal cells are found: classical pyramidal cells, neurons with their dendrites confined to the CA3 pyramidal cell layer, and a previously undescribed cell type, the "dentate" CA3 pyramidal cell, whose apical dendrites extend into and ramify within the hilus, granule cell layer, and molecular layer of the dentate gyrus. The basic electrophysiological properties of mossy cells and proximal CA3 cells are similar to those reported for the rodent. Mossy cells have a higher frequency of large amplitude spontaneous depolarizing postsynaptic potentials, and proximal CA3 pyramidal cells are more likely to discharge bursts of action potentials. Although mossy cells and CA3 pyramidal cells in macaque monkeys display many morphological and electrophysiological features described in rodents, these findings highlight significant species differences, with more heterogeneity and the potential for richer interconnections in the primate hippocampus.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center