Send to

Choose Destination
Mol Hum Reprod. 2001 Jan;7(1):11-20.

Identification of human candidate genes for male infertility by digital differential display.

Author information

Department of Medical Genetics, Institute of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.


Evidence for the importance of genetic factors in male fertility is accumulating. In the literature and the Mendelian Cytogenetics Network database, 265 cases of infertile males with balanced reciprocal translocations have been described. The candidacy for infertility of 14 testis-expressed transcripts (TETs) were examined by comparing their chromosomal mapping position to the position of balanced reciprocal translocation breakpoints found in the 265 infertile males. The 14 TETs were selected by using digital differential display (electronic subtraction) to search for apparently testis-specific transcripts in the TIGR database. The testis specificity of the 14 TETs was further examined by reverse transcription-polymerase chain reaction (RT-PCR) on adult and fetal tissues showing that four TETs (TET1 to TET4) were testis-expressed only, six TETs (TET5 to TET10) appeared to be differentially expressed and the remaining four TETs (TET11 to TET14) were ubiquitously expressed. Interestingly, the two tesis expressed-only transcripts, TET1 and TET2, mapped to chromosomal regions where seven and six translocation breakpoints have been reported in infertile males respectively. Furthermore, one ubiquitously, but predominantly testis-expressed, transcript, TET11, mapped to 1p32-33, where 13 translocation breakpoints have been found in infertile males. Interestingly, the mouse mutation, skeletal fusions with sterility, sks, maps to the syntenic region in the mouse genome. Another transcript, TET7, was the human homologue of rat Tpx-1, which functions in the specific interaction of spermatogenic cells with Sertoli cells. TPX-1 maps to 6p21 where three cases of chromosomal breakpoints in infertile males have been reported. Finally, TET8 was a novel transcript which in the fetal stage is testis-specific, but in the adult is expressed in multiple tissues, including testis. We named this novel transcript fetal and adult testis-expressed transcript (FATE).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center