Send to

Choose Destination
J Virol. 2001 Jan;75(2):638-44.

Ty1 proteolytic cleavage sites are required for transposition: all sites are not created equal.

Author information

Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.


The retroviral protease is a key enzyme in a viral multienzyme complex that initiates an ordered sequence of events leading to virus assembly and propagation. Viral peptides are initially synthesized as polyprotein precursors; these precursors undergo a number of proteolytic cleavages executed by the protease in a specific and presumably ordered manner. To determine the role of individual protease cleavage sites in Ty1, a retrotransposon from Saccharomyces cerevisiae, the cleavage sites were systematically mutagenized. Altering the cleavage sites of the yeast Ty1 retrotransposon produces mutants with distinct retrotransposition phenotypes. Blocking the Gag/PR site also blocks cleavage at the other two cleavage sites, PR/IN and IN/RT. In contrast, mutational block of the PR/IN or IN/RT sites does not prevent cleavage at the other two sites. Retrotransposons with mutations in each of these sites have transposition defects. Mutations in the PR/IN and IN/RT sites, but not in the Gag/PR site, can be complemented in trans by endogenous Ty1 copies. Hence, the digestion of the Gag/PR site and release of the protease N terminus is a prerequisite for processing at the remaining sites; cleavage of PR/IN is not required for the cleavage of IN/RT, and vice versa. Of the three cleavage sites in the Gag-Pol precursor, the Gag/PR site is processed first. Thus, Ty1 Gag-Pol processing proceeds by an ordered pathway.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center