Format

Send to

Choose Destination
Mol Gen Genet. 2000 Nov;264(4):425-32.

Mutation of the C-terminal leucine residue of PP2Ac inhibits PR55/B subunit binding and confers supersensitivity to microtubule destabilization in Saccharomyces cerevisiae.

Author information

1
Program in Molecular Pharmacology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. drhevans@fhcrc.org

Abstract

Protein phosphatase 2A is ubiquitous among eukaryotes and exists as a family of holoenzymes in which the catalytic subunit. PP2Ac, binds a variety of regulatory subunits. Using the yeast Saccharomyces cerevisia, we have investigated the role of the phylogenetically invariant C-terminal leucine residue of PP2Ac, which, in mammalian cells, undergoes reversible methylation and modulates binding of the PR55/B subunit. In S. cerevisiae, the C-terminal Leu-377 residue of Pph22p (equivalent to human PP2Ac Leu-309) was dispensable for cell growth under optimum conditions and its removal, or substitution by alanine, did not inhibit PP2A activity in vitro. However, Leu-377 is required for binding of the yeast PR55/B subunit, Cdc55p, by Pph22p, though apparently not for the binding of Rts1p, the yeast PR61/B' subunit. Furthermore, mutation of this leucine enhanced the sensitivity of cells to microtubule destabilization, a defect characteristic of cdc55delta mutant cells, which are impaired for spindle checkpoint function. These results demonstrate that the regulation of PP2A, mediated by PR55/B binding to the highly conserved PP2Ac C-terminus, is critical for cell viability under conditions of microtubule damage and support a role for PP2A in exit from mitosis.

PMID:
11129046
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center