Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2001 Jan;59(1):122-6.

Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG.

Author information

  • 1Aventis Pharmaceuticals, Inc., Bridgewater, New Jersey 08807-0800, USA.

Abstract

Administration of certain fluoroquinolone antibacterials has been associated with prolongation of the QT interval on the electrocardiogram and, on rare occasions, ventricular arrhythmia. Blockade of the human cardiac K+ channel HERG often underlies such clinical findings. Therefore, we examined a series of seven fluoroquinolones for their ability to interact with this channel. Using patch-clamp electrophysiology, we found that all of the drugs tested inhibited HERG channel currents, but with widely differing potencies. Sparfloxacin was the most potent compound, displaying an IC50 value of 18 microM, whereas ofloxacin was the least potent compound, with an IC50 value of 1420 microM. Other IC50 values were as follows: grepafloxacin, 50 microM; moxifloxacin, 129 microM; gatifloxacin, 130 microM; levofloxacin, 915 microM; and ciprofloxacin, 966 microM. Block of HERG by sparfloxacin displayed a positive voltage dependence. In contrast to HERG, the KvLQT1/minK K+ channel was not a target for block by the fluoroquinolones. These results provide a mechanism for the QT prolongation observed clinically with administration of sparfloxacin and certain other fluoroquinolones because free plasma levels of these drugs after therapeutic doses approximate those concentrations that inhibit HERG channel current. In the cases of levofloxacin, ciprofloxacin, and ofloxacin, inhibition of HERG occurs at concentrations much greater than those observed clinically. The data indicate that clinically relevant HERG channel inhibition is not a class effect of the fluoroquinolone antibacterials but is highly dependent upon specific substitutions within this series of compounds. HERG channel affinity should be an important criterion for the development of newer fluoroquinolones.

PMID:
11125032
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center