Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Dec 15;20(24):8987-95.

D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade.

Author information

Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA.


In spite of the recognition that striatal D(2) receptors are critical determinants in a variety of psychomotor disorders, the cellular mechanisms by which these receptors shape neuronal activity have remained a mystery. The studies presented here reveal that D(2) receptor stimulation in enkephalin-expressing medium spiny neurons suppresses transmembrane Ca(2+) currents through L-type Ca(2+) channels, resulting in diminished excitability. This modulation is mediated by G(beta)(gamma) activation of phospholipase C, mobilization of intracellular Ca(2+) stores, and activation of the calcium-dependent phosphatase calcineurin. In addition to providing a unifying mechanism to explain the apparently divergent effects of D(2) receptors in striatal medium spiny neurons, this novel signaling linkage provides a foundation for understanding how this pivotal receptor shapes striatal excitability and gene expression.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center