Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2001 Jan;280(1):C81-9.

Modulation of P2Z/P2X(7) receptor activity in macrophages infected with Chlamydia psittaci.

Author information

  • 1Unité de Biologie des Interactions Cellulaires, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1960, Institut Pasteur, 75724 Paris Cedex 15, France. rcsilva@ibccf.biof.ufrj.br

Abstract

Given the role that extracellular ATP (ATP(o))-mediated apoptosis may play in inflammatory responses and in controlling mycobacterial growth in macrophages, we investigated whether ATP(o) has any effect on the viability of chlamydiae in macrophages and, conversely, whether the infection has any effect on susceptibility to ATP(o)-induced killing via P2Z/P2X(7) purinergic receptors. Apoptosis of J774 macrophages could be selectively triggered by ATP(o), because other purine/pyrimidine nucleotides were ineffective, and it was inhibited by oxidized ATP, which irreversibly inhibits P2Z/P2X(7) purinergic receptors. Incubation with ATP(o) but not other extracellular nucleotides inhibits the growth of intracellular chlamydiae, consistent with previous observations on ATP(o) effects on growth of intracellular mycobacteria. However, chlamydial infection for 1 day also inhibits ATP(o)-mediated apoptosis, which may be a mechanism to partially protect infected cells against the immune response. Infection by Chlamydia appears to protect cells by decreasing the ability of ATP(o) to permeabilize macrophages to small molecules and by abrogating a sustained Ca(2+) influx previously associated with ATP(o)-induced apoptosis.

PMID:
11121379
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk