Format

Send to

Choose Destination
Enzyme Microb Technol. 2001 Jan 2;28(1):70-80.

Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases.

Author information

1
Unité de Recherche sur les Polysaccharides, leurs Organisations et Interactions INRA, BP 71627, 44316 Cedex 03, Nantes, France

Abstract

The filamentous fungal strains Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, previously selected for the bioconversion of ferulic acid to vanillic acid and vanillin respectively, were grown on sugar beet pulp. A large spectrum of polysaccharide-degrading enzymes was produced by A. niger and very few levels of feruloyl esterases were found. In contrast, P. cinnabarinus culture filtrate contained low amount of polysaccharide-degrading enzymes and no feruloyl esterases. In order to enhance feruloyl esterases in A. niger cultures, feruloylated oligosaccharide-rich fractions were prepared from sugar beet pulp or cereal bran and used as carbon sources. Number of polysaccharide-degrading enzymes were induced. Feruloyl esterases were much higher in maize bran-based medium than in sugar beet pulp-based medium, demonstrating the ability of carbon sources originating from maize to induce the synthesis of feruloyl esterases. Thus, A. niger I-1472 could be interesting to release ferulic acid from sugar beet pulp or maize bran.

PMID:
11118600

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center