Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2000 Dec 15;529 Pt 3:599-610.

Functional differences between cardiac and renal isoforms of the rat Na+-Ca2+ exchanger NCX1 expressed in Xenopus oocytes.

Author information

Department of Microbiology and Immunology, Department of Physiology and Medical Biotechnology Center, UMBI, University of Maryland at Baltimore, School of Medicine, Baltimore, MD 21201, USA.


The transcript of the Na+-Ca2+ exchanger gene NCX1 undergoes alternative splicing to produce tissue-specific isoforms. The cloned NCX1 isoforms were expressed in Xenopus oocytes and studied using a two-electrode voltage clamp method to measure Na+-Ca2+ exchanger activity. The cardiac isoform (NCX1.1) expressed in oocytes was less sensitive to depolarizing voltages and to activation by [Ca2+]i than the renal isoform (NCX1.3). The cardiac isoform of NCX1 is more sensitive to activation by protein kinase A (PKA) than the renal isoform which may be explained by preferential phosphorylation. The cardiac isoform of NCX1 is phosphorylated to a greater extent than the renal isoform. The action of PKA phosphorylation which increases the activity of the cardiac isoform of the Na+-Ca2+ exchanger in oocytes was confirmed in adult rat ventricular cardiomyocytes by measuring Na+-dependent Ca2+ flux. We conclude that alternative splicing of NCX1 confers distinct functional characteristics to tissue-specific isoforms of the Na+-Ca2+ exchanger.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center