Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Environ Contam Toxicol. 2001 Jan;40(1):128-35.

Oral bioavailability of lead and arsenic from a NIST standard reference soil material.

Author information

  • 1Program in Exposure Assessment of Rutgers University and the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.

Abstract

The oral bioavailability of soil contaminants is measured using in vitro or in vivo techniques. Current efforts in our laboratory are focused on the comparisons of in vitro methods for bioavailability estimation with the presently employed in vivo techniques, such as animal models. We present a comparison of two techniques for oral bioavailability estimation: in vitro dissolution and in vivo rat feeding using a standard reference soil. Lead (Pb) and arsenic (As) were chosen because of the range of concentration in this soil as well as the large historical database of bioavailability values for these metals. Metal solubility was measured using a sequential soil extraction in synthetic analogues of human saliva, gastric and intestinal fluids. The soluble metal was defined as the bioaccessible fraction. Oral bioavailability of Pb and As was measured in Sprague Dawley rats by determining metal levels in the major organs and urine, feces, and blood at 1-, 2-, and 3-day time points. Extractions to determine bioaccessibility yielded a gastric component of 76.1% and 69.4% for Pb and As, respectively, and intestinal components were 10.7% and 65.9%. The oral bioavailability of the standard reference soil was 0.7% and 37.8% for Pb and As, respectively. Bioaccessibility was greater than bioavailability for both metals in both gastrointestinal compartments. Although Pb had the highest soil concentration of the selected metals, it was the least bioavailable, while As was highly available in both the in vitro and in vivo method. These types of data allow for an in vitro-in vivo comparison of a soil whose metal concentrations have been certified and validated.

PMID:
11116348
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center