Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 16;276(11):8582-7. Epub 2000 Dec 12.

Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll a.

Author information

Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691 Stockholm, Sweden.


Etiolated plant seedlings exposed to light respond by transient accumulation of the nucleus-encoded, plastid-located early light-inducible proteins (Elips). These proteins are distant relatives of the light-harvesting chlorophyll a/b-binding gene family and bind pigments with unusual characteristics. To investigate whether accumulation of Elips in plastid membranes is post-translationally regulated by pigments, reconstitution studies were performed, where in vitro transcribed and translated low molecular mass Elip precursors of barley were combined with lysed barley etioplasts complemented with various compositions of isolated pigments. We showed that the membrane insertion of Elips, as proven by protease protection assays and washes with a chaotropic salt or alkali, depended strictly on chlorophyll a but not on chlorophyll b or xanthophyll zeaxanthin. The amount of inserted Elips increased almost linearly with the chlorophyll a concentration, and the insertion efficiency was not significantly influenced by a light intensity between 1 and 1,000 micromol x m(-2) x s(-1). In contrast, in vitro import of Elip precursors into greening plastids was enhanced by high intensity light. Thus, we conclude that although chlorophylls bound to Elips seem to not be involved in light harvesting, they are crucial for a stable insertion of these proteins into the plastid membrane.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center