Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 9;276(10):7176-86. Epub 2000 Dec 11.

Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p.

Author information

  • 1Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.


In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center