Format

Send to

Choose Destination
Biophys J. 2000 Dec;79(6):2801-17.

Engineering aspects of enzymatic signal transduction: photoreceptors in the retina.

Author information

1
Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.

Abstract

Identifying the basic module of enzymatic amplification as an irreversible cycle of messenger activation/deactivation by a "push-pull" pair of opposing enzymes, we analyze it in terms of gain, bandwidth, noise, and power consumption. The enzymatic signal transduction cascade is viewed as an information channel, the design of which is governed by the statistical properties of the input and the noise and dynamic range constraints of the output. With the example of vertebrate phototransduction cascade we demonstrate that all of the relevant engineering parameters are controlled by enzyme concentrations and, from functional considerations, derive bounds on the required protein numbers. Conversely, the ability of enzymatic networks to change their response characteristics by varying only the abundance of different enzymes illustrates how functional diversity may be built from nearly conserved molecular components.

PMID:
11106590
PMCID:
PMC1301161
DOI:
10.1016/S0006-3495(00)76519-2
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center