Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA. 2000 Nov;6(11):1585-96.

Alternative designs for construction of the class II transfer RNA tertiary core.

Author information

1
Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, 93106-9510, USA.

Abstract

The structural requirements for assembly of functional class II transfer RNA core regions have been examined by sequence analysis and tested by reconstruction of alternative folds into the tertiary domain of Escherichia coli tRNA(2)Gln. At least four distinct designs have been identified that permit stable folding and efficient synthetase recognition, as assessed by thermal melting profiles and glutaminylation kinetics. Although most large variable-arm tRNAs found in nature possess an enlarged D-loop, lack of this feature can be compensated for by insertion of nucleotides either 3' to the variable loop or within the short acceptor/D-stem connector region. Rare pyrimidines at nt 9 in the core region can be accommodated in the class II framework, but only if specific nucleotides are present either in the D-loop or 3' to the variable arm. Glutaminyl-tRNA synthetase requires one or two unpaired uridines 3' to the variable arm to efficiently aminoacylate several of the class II frameworks. Because there are no specific enzyme contacts in the tRNAGln core region, these data suggest that tRNA discrimination by GlnRS depends in part on indirect readout of RNA sequence information.

PMID:
11105758
PMCID:
PMC1370028
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center