Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2000 Dec 1;529 Pt 2:395-404.

Regulation of basal intracellular calcium concentration by the sarcoplasmic reticulum in myocytes from the rat gastric antrum.

Author information

  • 1Smooth Muscle Research Group, Department of Physiology, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.


The intracellular calcium concentration ([Ca2+]i) was monitored in fura-2-loaded myocytes isolated from the rat gastric antrum and voltage clamped at -60 1r1rqmV1qusing the perforated patch clamp technique. The rate of quench of fura-2 fluorescence by Mn2+ was used as a measure of capacitative Ca2+ entry. Cyclopiazonic acid (5 microM) did not affect the holding current but produced a sustained elevation in steady-state [Ca2+]i that was dependent on the presence of external calcium. Cyclopiazonic acid increased Mn2+ influx with physiological external [Ca2+], but not in Ca2+-free conditions. Cyclopiazonic acid increased the rate of [Ca2+]i rise following a rapid switch from Ca2+-free to physiological [Ca2+] solution. Sustained application of carbachol (10 microM) produced an elevation in steady-state [Ca2+]i that was associated with an increased rate of Mn2+ influx. Application of cyclopiazonic acid in the presence of carbachol further elevated steady-state [Ca2+]i without changing Mn2+ influx. Ryanodine (10 microM) elevated steady-state [Ca2+]i either on its own or following a brief application of caffeine (10 9i1s1sqmMc1q). Cyclopiazonic acid had no further effect when added to cells pre-treated with ryanodine. Neither caffeine nor ryanodine increased the rate of Mn2+ influx. When brief applications of ionomycin (25 microM) in Ca2+-free solution were used to release stored Ca2+, ryanodine reduced the amplitude of the resulting [Ca2+]i transients by approximately 30 %, indicating that intracellular stores were partially depleted. These findings suggest that continual uptake of Ca2+ by the sarcoplasmic reticulum Ca2+-ATPase into a ryanodine-sensitive store limits the bulk cytoplasmic [Ca2+]i under resting conditions. This pathway can be short circuited by 10 microM ryanodine, presumably by opening Ca2+ channels in the sarcoplasmic reticulum. Depletion of stores with cyclopiazonic acid or carbachol also activates capacitative Ca2+ entry.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk