Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 16;276(11):8297-305. Epub 2000 Nov 28.

Natural ceramide reverses Fas resistance of acid sphingomyelinase(-/-) hepatocytes.

Author information

1
Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Abstract

The role of the second messenger ceramide in Fas-mediated death requires clarification. To address this issue, we generated hepatocytes from paired acid sphingomyelinase (ASMase; asmase)(+/+) and asmase(-/-) mice. asmase(-/-) hepatocytes, derived from 8-week-old mice, manifested normal sphingomyelin content and normal morphological, biochemical, and biologic features. Nonetheless, ASMase-deficient hepatocytes did not display rapid ceramide elevation or apoptosis in response to Jo2 anti-Fas antibody. asmase(-/-) hepatocytes were not inherently resistant to apoptosis because staurosporine, which did not induce early ceramide elevation, stimulated a normal apoptotic response. The addition of low nanomolar quantities of natural C16-ceramide, which by itself did not induce apoptosis, completely restored the apoptotic response to anti-Fas in asmase(-/-) hepatocytes. Other sphingolipids did not replace natural ceramide and restore Fas sensitivity. Overcoming resistance to Fas in asmase(-/-) hepatocytes by natural ceramide is evidence that it is the lack of ceramide and not ASMase which determines the apoptotic phenotype. The ability of natural ceramide to rescue the phenotype without reversing the genotype provides evidence that ceramide is obligate for Fas induction of apoptosis in hepatocytes.

PMID:
11096096
DOI:
10.1074/jbc.M008732200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center