Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Mar 2;276(9):6420-8. Epub 2000 Nov 28.

Oct-1 preferentially interacts with androgen receptor in a DNA-dependent manner that facilitates recruitment of SRC-1.

Author information

  • 1Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA.

Abstract

Gene regulation by steroid hormone receptors depends on the particular character of the DNA response element, the array of neighboring transcription factors, and recruitment of coactivators that interface with the transcriptional machinery. We are studying these complex interactions for the androgen-dependent enhancer of the mouse sex-limited protein (Slp) gene. This enhancer has, in addition to multiple androgen receptor (AR)-binding sites, a central region (FPIV) with a binding site for the ubiquitous transcription factor Oct-1 that appears crucial for hormonal regulation in vivo. To examine the role of Oct-1 in androgen-specific gene activation, we tested the interaction of Oct-1 with AR versus glucocorticoid receptor (GR) in vivo and in vitro. Oct-1 coimmunoprecipitated from cell lysates with both AR and GR, but significant association with AR required both proteins to be DNA-bound. This was confirmed by sensitivity of the protein association to treatment with ethidium bromide or micrococcal nuclease. Addition of DNA to micrococcal nuclease-treated samples restored interaction, even when binding sites were on separate DNA molecules, suggesting association was due to direct protein-protein interaction and not indirect tethering via the DNA. AR/GR chimeras revealed that interaction of the N and C termini of AR was required to communicate the DNA-bound state that enhances interaction with Oct-1. Protease digestion assays of hormone-bound receptors revealed further conformational changes in the ligand binding domain of AR, but not GR, upon DNA binding. Furthermore, these conformational changes led to increased interaction with the coactivator SRC-1, via the NID 4 domain, suggesting DNA binding facilitates recruitment of SRC-1 by the AR-Oct-1 complex. Altogether, these results suggest that the precise arrangement of binding sites in the Slp enhancer ensures proper hormonal response by imposing differential interactions between receptors and Oct-1, which in turn contributes to SRC-1 recruitment to the promoter.

PMID:
11096094
DOI:
10.1074/jbc.M008689200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center