Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13543-8.

An autocatalytic mechanism of protein nitrosylation.

Author information

1
Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.

Abstract

Nitros(yl)ation is a widespread protein modification that occurs during many physiological and pathological processes. It can alter both the activity and function of a protein. Nitric oxide (( small middle dot)NO) has been implicated in this process, but its mechanism remained uncertain. ( small middle dot)NO is unable to react with nucleophiles under oxygen-free conditions, suggesting that its higher oxides, such as N(2)O(3), were actually nitrosylating agents. However, low concentrations and short lifespans of these species in vivo raise the question of how they could efficiently locate target proteins. Here we demonstrate that at physiological concentrations of ( small middle dot)NO, N(2)O(3) forms inside protein-hydrophobic cores and causes nitrosylation within the protein interior. This mechanism of protein modification has not been characterized, because all previously described mechanisms (e.g., phosphorylation, acetylation, ADP-ribosylation, etc.) occur via attack on a protein by an external modification agent. Oxidation of ( small middle dot)NO to N(2)O(3) is facilitated by micellar catalysis, which is mediated by the hydrophobic phase of proteins. Thus, a target protein seems to be a catalyst of its own nitrosylation. One of the applications of this finding, as we report here, is the design of specific hydrophobic compounds whose cooperation with ( small middle dot)NO and O(2) allows the rapid inactivation of target enzymes to occur.

PMID:
11095728
PMCID:
PMC17612
DOI:
10.1073/pnas.250398197
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center