Format

Send to

Choose Destination
Biochemistry. 2000 Nov 28;39(47):14664-9.

Formation of the "peroxy" intermediate in cytochrome c oxidase is associated with internal proton/hydrogen transfer.

Author information

1
Department of Biochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.

Abstract

When dioxygen is reduced to water by cytochrome c oxidase a sequence of oxygen intermediates are formed at the reaction site. One of these intermediates is called the "peroxy" (P) intermediate. It can be formed by reacting the two-electron reduced (mixed-valence) cytochrome c oxidase with dioxygen (called P(m)), but it is also formed transiently during the reaction of the fully reduced enzyme with oxygen (called P(r)). In recent years, evidence has accumulated to suggest that the O-O bond is cleaved in the P intermediate and that the heme a(3) iron is in the oxo-ferryl state. In this study, we have investigated the kinetic and thermodynamic parameters for formation of P(m) and P(r), respectively, in the Rhodobacter sphaeroides enzyme. The rate constants and activation energies for the formation of the P(r) and P(m) intermediates were 1.4 x 10(4) s(-1) ( approximately 20 kJ/mol) and 3 x 10(3) s(-1) ( approximately 24 kJ/mol), respectively. The formation rates of both P intermediates were independent of pH in the range 6.5-9, and there was no proton uptake from solution during P formation. Nevertheless, formation of both P(m) and P(r) were slowed by a factor of 1.4-1.9 in D(2)O, which suggests that transfer of an internal proton or hydrogen atom is involved in the rate-limiting step of P formation. We discuss the origin of the difference in the formation rates of the P(m) and P(r) intermediates, the formation mechanisms of P(m)/P(r), and the involvement of these intermediates in proton pumping.

PMID:
11087423
DOI:
10.1021/bi0013748
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center