Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2000 Dec 1;352 Pt 2:343-51.

Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C.

Author information

  • 1Interdisciplinary Research Institute (IRIBHN), Universit√© Libre de Bruxelles, Campus Erasme, Bldg. C, 808 Route de Lennik, 1070 Brussels, Belgium.


Inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase catalyses the phosphorylation of Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4). cDNAs encoding two isoenzymes of Ins(1,4,5)P(3) 3-kinase (3-kinases A and B) have been described previously. In the present study, we report the cloning of a full-length 2052 bp cDNA encoding a third human isoenzyme of the Ins(1,4,5)P(3) 3-kinase family, referred to as isoform C. This novel enzyme has a calculated molecular mass of 75. 207 kDa and a K(m) for Ins(1,4,5)P(3) of 6 microM. Northern-blot analysis showed the presence of a transcript of approx. 3.9 kb in various human tissues. Inositol trisphosphate 3-kinase C demonstrates enzymic activity when expressed in DH5alphaF' bacteria or COS-7 cells. Calcium alone decreases the Ins(1,4,5)P(3) 3-kinase activity of the 3-kinase C isoenzyme in transfected COS-7 cells. This inhibitory effect is reversed in the presence of calmodulin. The recombinant bacterial 3-kinase C can be adsorbed on calmodulin-Sepharose in the presence of calcium. The present data show that Ins(1,4,5)P(3) 3-kinase C: (i) shares a conserved catalytic domain of about 275 amino acids with the two other mammalian isoforms, (ii) could be purified on a calmodulin-Sepharose column and (iii) could be distinguished from the A and B isoenzymes by the effects of calcium and of calmodulin.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center