Send to

Choose Destination
J Mol Biol. 2000 Nov 24;304(2):165-76.

Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase.

Author information

Institute of Genetics, University of Nottingham, Nottingham, NG7 2UH, UK.


Holliday junctions are key intermediates in both homologous recombination and DNA repair, and are also formed from replication forks stalled at lesions in the template strands. Their resolution is critical for chromosome segregation and cell viability, and is mediated by a class of small, homodimeric endonucleases that bind the structure and cleave the DNA. All the enzymes studied require divalent metal ions for strand cleavage and their active centres are characterised by conserved aspartate/glutamate residues that provide ligands for metal binding. Sequence alignments reveal that they also contain a number of conserved basic residues. We used site-directed mutagenesis to investigate such residues in the RusA resolvase. RusA is a 120 amino acid residue polypeptide that can be activated in Escherichia coli to promote recombination and repair in the absence of the Ruv proteins. The RuvA, RuvB and RuvC proteins form a complex on Holliday junction DNA that drives coupled branch migration (RuvAB) and resolution (RuvC) reactions. In contrast to RuvC, the RusA resolvase does not interact directly with a branch migration motor, which simplifies analysis of its resolution activity. Catalysis depends on three highly conserved acidic residues (Asp70, Asp72 and Asp91) that define the catalytic centre. We show that Lys76, which is invariant in RusA sequences, is essential for catalysis, but not for DNA binding, and that an invariant asparagine residue (Asn73) is required for optimal activity. Analysis of DNA binding revealed that RusA may interact with one face of an open junction before manipulating its conformation in the presence of Mg(2+) as part of the catalytic process. A well-conserved arginine residue (Arg69) is linked with this critical stage. These findings provide the first insights into the roles played by basic residues in DNA binding and catalysis by a Holliday junction resolvase.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center