Format

Send to

Choose Destination
Microb Ecol. 2000 Aug;40(3):209-222.

Succession of Protists on Estuarine Aggregates.

Author information

1
Institut für Hydrobiologie und Fischereiwissenschaft, Hydrobiologische Abteilung, Universität Hamburg, Zeiseweg 9, D-22765 Hamburg, Germany

Abstract

Colonization by and succession of bacteria and bacterivorous protists on laboratory-made aggregates were determined over a period of 14 days during winter and spring in 1997. Aggregates were generated from natural water from the limnetic zone of the Elbe Estuary using a tilting tube roller system. Within 1 h after the beginning of the experiments, macroaggregates started to form. Aggregates reached a maximum size of 1 mm with a tendency toward large sizes at the end of the experiment after the 10th day. On the first day, high bacterial densities of more than 10(9) cells ml(-1) were detected within the aggregates. The abundances of flagellates and ciliates within aggregates were also two or three orders of magnitude higher than in the surrounding water. Densities of aggregate associated organisms are comparable to those occuring in sediments. The first protistan colonizers on the aggregates were small heterotrophic flagellates, such as choanoflagellates and small euglenids. Later, beginning on the 4th day, small sarcodines and ciliates became abundant. The most abundant ciliates associated with aggregates were small species of the Hypotrichia, Cyrtophorida, and Hymenostomata. After 9 days, large omnivorous and carnivorous ciliates, such as large members of the Hypotrichia and the Pleurostomatida, occurred. In spring, large heterotrophic flagellates and amebae also appeared at this time. These findings indicated the existence of a succession of protists on newly formed aggregates and a microbial food net within the aggregates based on bacterial production. Additionally, most of the species observed during this study were adapted for living on surfaces. In natural environments they are more common in benthic than in pelagic environments. For them, aggregates are havens in the water column comparable to sediment communities.

PMID:
11080379

Supplemental Content

Loading ...
Support Center