Format

Send to

Choose Destination
Microb Ecol. 2000 Aug;40(3):189-199.

Aquifer Protist Response and the Potential for TCE Bioremediation with Burkholderia cepacia G4 PR1.

Author information

1
Center for Environmental Diagnostics and Bioremediation, Biology Department, University of West Florida, 11,000 University Parkway, Pensacola, FL 32514, USA

Abstract

Bacterivorous protists have been recovered from pristine and contaminated aquifer environments, but the ecological role of these organisms in bioremediation strategies has not been well defined. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) due to a secondary transposition of a Tn5 transposable element in a trichloroethylene (TCE) degradative plasmid (TOM). Groundwater and sediment from a potential site for a TCE bioremediation field demonstration were used in laboratory microcosms to test the survival of this organism. In nonsterile aquifer sediment slurries, the bacterium was eliminated in a logrithmic decay concomitant with an increase in bacterivorous protists. A half-life for the organism calculated from extinction coefficients increased logarithmically with increasing inoculation density above 1 x 10(6) PR1 ml(-1). For inoculation densities below this level, the half-life of PR1 increased exponentially with decreasing inoculation density. The lowest half-lives corresponded to densities of bacteria that stimulate response of bacterivores. In a column system designed to incorporate aquifer flow, repeated addition of PR1 resulted in a buildup of bacterivore populations and reduced half-life of the bacterium. Addition of TCE and growth substrate in the eluent resulted in prolonged survival of PR1 and apparent mineralization of TCE. The results indicate significant but predictable losses due to native bacterivores would occur within and beyond a treatment zone where PR1 would be added to the aquifer, and mineralization of TCE in contaminated groundwater might be possible with repeated inoculation and addition of nutrients.

PMID:
11080377

Supplemental Content

Loading ...
Support Center