Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2000 Nov;124(3):1027-38.

Linear beta-1,3 glucans are elicitors of defense responses in tobacco.

Author information

  • 1Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université Louis Pasteur, F-67084 Strasbourg cedex, France.


Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk