Format

Send to

Choose Destination
See comment in PubMed Commons below
Hippocampus. 2000;10(5):561-8.

Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons.

Author information

1
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

Abstract

Dendritic spines are targets of most excitatory inputs in the central nervous system (CNS) and are morphologically heterogeneous. Ultrastructural studies have traditionally classified spines into four major categories (filopodia, stubby, thin, and mushroom) based on their distinct morphologies. The recent discovery of rapid morphological plasticity of spines has raised the possibility that those categories, rather than being intrinsically different populations of spines, represent instead temporal snapshots of a single dynamic phenomenon. We examined this question with two-photon time-lapse imaging of developing hippocampal pyramidal neurons, transfected with E-GFP in cultured slices. After blind scoring to morphologically classify spines into the four traditional groups, we analyzed the fate of populations of spines over a period of 2-4 h. We found considerable morphological conversions among all categories, although systematic trends were detected. While most stubbies and spines (defined for our analysis as the combination of thin and mushroom protrusions) retained their basic morphologies, most filopodia transformed into stubbies and spines, although they could also extend out of existing spines. Our results suggest that in developing hippocampal pyramidal neurons, traditional morphological distinctions are stable over short (<4 h) periods of time, but that at the same time, considerable mixing among these groups takes place.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center