Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Feb 16;276(7):5059-67. Epub 2000 Nov 9.

Human chromatid cohesin component hRad21 is phosphorylated in M phase and associated with metaphase centromeres.

Author information

  • 1Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.


Sister chromatids duplicated in S phase are connected with each other during G(2) and M phase until the onset of anaphase. This chromatid cohesion is essential for correct segregation of genetic material to daughter cells. Recently, understanding of the molecular mechanisms governing chromatid cohesion in yeast has been greatly advanced, whereas these processes in mammalian cells remain unclear. We report here biochemical and cytological analyses of human Rad21, a homologue of the yeast cohesin subunit, Scc1p/Mcd1p. hRad21 is a nuclear phosphorylated protein. Its abundance does not change during the cell cycle, and it becomes hyperyphosphorylated in M phase. Most hRad21 is not associated with chromatin when the nuclear envelope breakdown takes place in prophase. However, a detailed analysis of the spread chromosomes indicated that hRad21 remains associated with prometaphase-like chromosomes along their entire lengths. The mitotic chromatin-bound hRad21 becomes dissociated in a highly regulated manner because hRad21 remains specifically at the centromeres but disappears from the arm regions on metaphase-like chromosomes. Interestingly, hRad21 at the metaphase centromeres appears to be present at the inner pairing domain where the two sister chromatids are supposed to be in intimate contact. These results suggest that hRad21 has a critical role in chromatid cohesion in human mitotic cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center