Format

Send to

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2000 Nov;20(11):2351-8.

Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo.

Author information

1
Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.

Abstract

We have previously shown that long-term treatment with an inflammatory cytokine from the adventitia causes the development of coronary vascular lesions, with the accumulation of macrophages. Recent studies in vitro have suggested that small G-protein Rho and its effector, Rho-kinase/ROK/ROCK, may be the key molecules for various cellular functions, including cell adhesion and movement. In this study, we examined whether adventitia-derived macrophages cause the formation of coronary vascular lesions in vivo and, if so, whether Rho-kinase is involved in the process. Porcine coronary segments from the adventitia were chronically treated with monocyte chemoattractant protein-1 alone, oxidized low density lipoprotein alone, or both. Vascular lesion formation (neointimal formation and development of vascular remodeling) was mostly enhanced at the coronary segment cotreated with monocyte chemoattractant protein-1 and oxidized low density lipoprotein, where the phosphorylation of myosin binding subunit of myosin phosphatase was increased, indicating an increased activity of Rho-kinase in vivo. Histological examination demonstrated that macrophages were accumulated at the adventitia and thereafter migrated into the vascular wall. Long-term oral treatment with fasudil, which is metabolized to a specific Rho-kinase inhibitor (hydroxyfasudil) after oral absorption, markedly inhibited the myosin binding subunit phosphorylation, the macrophage accumulation and migration, and the coronary lesion formation in vivo. These results indicate that Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in our porcine model in vivo.

PMID:
11073837
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center