Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Nov 15;20(22):8229-37.

Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria.

Author information

Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.


Activation of the mitochondrial permeability transition may contribute to excitotoxic neuronal death (Ankarcrona et al., 1996; Dubinsky and Levi, 1998). However, cyclosporin A (CsA), a potent inhibitor of the permeability transition in liver mitochondria, only protects against neuronal injury by limited doses of glutamate and selected ischemic paradigms. The lack of consistent CsA inhibition of the mitochondrial permeability transition was analyzed with the use of isolated brain mitochondria. Changes in the permeability of the inner mitochondrial membrane were evaluated by monitoring mitochondrial membrane potential (Deltapsi), using the distribution of tetraphenylphosphonium, and by monitoring mitochondrial swelling, using light absorbance measurements. Metabolic impairments, large Ca(2+) loads, omission of external Mg(2+), or low doses of palmitic acid or the protonophore FCCP exacerbated Ca(2+)-induced sustained depolarizations and swelling and eliminated CsA inhibition. BSA restored CsA inhibition in mitochondria challenged with 50 microm Ca(2+), but not with 100 microm Ca(2+). CsA failed to prevent Ca(2+)-induced depolarization or to repolarize mitochondria when mitochondria were depolarized excessively. Similarly, CsA failed to prevent mitochondrial swelling or PEG-induced shrinkage after swelling when the Ca(2+) challenge produced a strong, sustained depolarization. Thus in brain mitochondria CsA may be effective only as an inhibitor of the permeability transition and the Ca(2+)-activated low permeability state under conditions of partial depolarization. In contrast, ADP plus oligomycin inhibited both permeabilities under all of the conditions that were tested. In situ, the neuroprotective action of CsA may be limited to glutamate challenges sufficiently toxic to induce the permeability transition but not so severe that mitochondrial depolarization exceeds threshold.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center