Send to

Choose Destination
J Neuroimmunol. 2000 Nov 1;111(1-2):55-63.

Modulation of the IL-10/IL-12 cytokine circuit by interferon-beta inhibits the development of epitope spreading and disease progression in murine autoimmune encephalomyelitis.

Author information

Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, 44195, Cleveland, OH, USA.


IFN-beta has been shown to be effective in the treatment of multiple sclerosis (MS). However, the primary mechanism by which IFN-beta mediates its therapeutic effect remains unclear. Recent studies indicate that under defined conditions, IFN-beta may downregulate DC expression of IL-12. We and others have shown that IFN-beta may also downregulate IL-10. In light of the recently proposed paradigm that an IL-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease, we examined the effect of IFN-beta on the development and behavior of the autoreactive T cell repertoire during experimental autoimmune encephalomyelitis (EAE), an animal model sharing many features with MS. SWXJ mice were immunized with the immunodominant p139-151 determinant of myelin proteolipid protein (PLP), and at onset of EAE were treated every other day with IFN-beta. After eight weeks of treatment, we assessed autoreactivity and observed no significant IFN-beta effect on splenocyte proliferation or splenocyte production of IFN-gamma, IL-2, IL-4, or IL-5 in response to the priming determinant used to initiate disease. However, in IFN-beta treated mice, the cytokine profile in response to the priming immunogen was significantly skewed toward an increased production of IL-10 and a concurrent decreased production of IL-12. Moreover, the in vivo modulation of the IL-10/IL-12 immunoregulatory circuit in response to the priming immunogen was accompanied by an aborted development of epitope spreading. Our results indicate that IFN-beta induces a reciprocal modulation of the IL-10/IL-12 cytokine circuit in vivo. This skewed autoreactivity establishes an inflammatory microenvironment that effectively prevents endogenous self-priming thereby inhibiting the progression of disease associated with epitope spreading.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center