Send to

Choose Destination
J Neurotrauma. 2000 Oct;17(10):871-90.

Free radical pathways in CNS injury.

Author information

Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California 94305, USA.


Free radicals are highly reactive molecules implicated in the pathology of traumatic brain injury and cerebral ischemia, through a mechanism known as oxidative stress. After brain injury, reactive oxygen and reactive nitrogen species may be generated through several different cellular pathways, including calcium activation of phospholipases, nitric oxide synthase, xanthine oxidase, the Fenton and Haber-Weiss reactions, by inflammatory cells. If cellular defense systems are weakened, increased production of free radicals will lead to oxidation of lipids, proteins, and nucleic acids, which may alter cellular function in a critical way. The study of each of these pathways may be complex and laborious since free radicals are extremely short-lived. Recently, genetic manipulation of wild-type animals has yielded species that over- or under-express genes such as, copper-zinc superoxide dismutase, manganese superoxide dismutase, nitric oxide synthase, and the Bcl-2 protein. The introduction of the species has improved the understanding of oxidative stress. We conclude here that substantial experimental data links oxidative stress with other pathogenic mechanisms such as excitotoxicity, calcium overload, mitochondrial cytochrome c release, caspase activation, and apoptosis in central nervous system (CNS) trauma and ischemia, and that utilization of genetically manipulated animals offers a unique possibility to elucidate the role of free radicals in CNS injury in a molecular fashion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center