Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2000 Nov;66(11):4817-21.

Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome.

Author information

  • 1Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, Georgia 30602, USA.


Despite recent success in transforming various thermophilic gram-type-positive anaerobes with plasmid DNA, use of shuttle vectors for the expression of genes other than antibiotic resistance markers has not previously been described. We constructed new vectors in order to express heterologous hydrolytic enzymes in our model system, Thermoanaerobacterium saccharolyticum JW/SL-YS485. Transformed Thermoanaerobacterium expressed active enzyme, indicating that this system may function as an alternate expression host, especially for genes with a thermophilic origin. To develop further the genetic system for T. saccharolyticum JW/SL-YS485, two improved Escherichia coli-Thermoanaerobacterium shuttle vectors, pRKM1 and pRUKM, were constructed. Furthermore, the kanamycin resistance cassette alone and the kanamycin resistance cassette plus the cellobiohydrolase gene (cbhA) from Clostridium thermocellum JW20 were integrated into the xylanase gene (xynA) region of the Thermoanaerobacterium chromosome via homologous recombination using pUC-based suicide vectors pUXK and pUXKC.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center