Format

Send to

Choose Destination
Biosci Biotechnol Biochem. 2000 Sep;64(9):2012-7.

High expression of the second lysine decarboxylase gene, ldc, in Escherichia coli WC196 due to the recognition of the stop codon (TAG), at a position which corresponds to the 33th amino acid residue of sigma38, as a serine residue by the amber suppressor, supD.

Author information

1
Department of Molecular and Cell Biology, Graduate School, of Agricultural Science, Tohoku University, Sendai, Japan.

Abstract

Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, sigma38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of sigma38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a sigma38 preparation from WC196 showed that the 33th residue of sigma38 is a serine residue. The deltarpoS deltacadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of sigma38, expressed a significant amount of Ldc and accumulated a large amount of sigma38. However, the deltarpoS deltacadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither sigma38 nor Ldc significantly.

PMID:
11055416
DOI:
10.1271/bbb.64.2012
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center