Send to

Choose Destination
J Mol Biol. 2000 Nov 3;303(4):503-14.

Alternative design of a tRNA core for aminoacylation.

Author information

Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, BLSB 222, 19107, USA.


The core of Escherichia coli tRNA(Cys) is important for aminoacylation of the tRNA by cysteine-tRNA synthetase. This core differs from the common tRNA core by having a G15:G48, rather than a G15:C48 base-pair. Substitution of G15:G48 with G15:C48 decreases the catalytic efficiency of aminoacylation by two orders of magnitude. This indicates that the design of the core is not compatible with G15:C48. However, the core of E. coli tRNA(Gln), which contains G15:C48, is functional for cysteine-tRNA synthetase. Here, guided by the core of E. coli tRNA(Gln), we sought to test and identify alternative functional design of the tRNA(Cys) core that contains G15:C48. Although analysis of the crystal structure of tRNA(Cys) and tRNA(Gln) implicated long-range tertiary base-pairs above and below G15:G48 as important for a functional core, we showed that this was not the case. The replacement of tertiary interactions involving 9, 21, and 59 in tRNA(Cys) with those in tRNA(Gln) did not construct a functional core that contained G15:C48. In contrast, substitution of nucleotides in the variable loop adjacent to 48 of the 15:48 base-pair created functional cores. Modeling studies of a functional core suggests that the re-constructed core arose from enhanced stacking interactions that compensated for the disruption caused by the G15:C48 base-pair. The repacked tRNA core displayed features that were distinct from those of the wild-type and provided evidence that stacking interactions are alternative means than long-range tertiary base-pairs to a functional core for aminoacylation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center