Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2000 Oct;48(10):4628-34.

Estrogenic effects of extracts from cabbage, fermented cabbage, and acidified brussels sprouts on growth and gene expression of estrogen-dependent human breast cancer (MCF-7) cells.

Author information

1
Department of Food Science and Human Nutrition, Department of Chemistry, and Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Abstract

Cruciferous vegetable extracts from freeze-dried cabbage (FDC), freeze-dried fermented cabbage (FDS), and acidified Brussels sprouts (ABS) were prepared by exhaustive extraction with ethyl acetate. Estrogenic and antiestrogenic effects of these extracts were analyzed. To identify whether the extracts are potential estrogen receptor (ER) ligands that can act as agonists or antagonists, the binding affinity of extracts for the ER was measured using a competitive radiometric binding assay. The extracts bound with low affinity to the ER, and the relative binding affinity is estradiol > FDS > FDC > ABS. These extracts were evaluated for their estrogenic and antiestrogenic activities in estrogen-dependent human breast cancer (MCF-7) cells using as endpoints proliferation and induction of estrogen-responsive pS2 gene expression, which was analyzed using Northern blot assay. At low concentrations (5-25 ng/mL) all of the extracts reduced 1 nM estradiol-induced MCF-7 cell proliferation. Extracts at 25 ng/mL also inhibited estradiol-induced pS2 mRNA expression. At higher extract concentrations (50 ng/mL-25 microg/mL), however, increased proliferation in MCF-7 cells was observed. Similarly, expression of the pS2 gene was induced by higher extract concentrations (0.25-25 microg/mL). The pure estrogen antagonist, ICI 182,780, suppressed the cell proliferation induced by the extracts as well as by estradiol and also the induction of pS2 expression by the extracts. The ER subtype-selective activities of FDC and FDS were analyzed using a transfection assay in human endometrial adenocarcinoma (HEC-1) cells. FDS acted as an ERalpha-selective agonist while FDC fully activated both ER-alpha and ER-beta. Growth of the ER-negative MDA-231 cells was not affected by the extracts or by estradiol. This study demonstrates that cruciferous vegetable extracts act bifunctionally, like an antiestrogen at low concentrations and an estrogen agonist at high concentrations.

PMID:
11052710
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center