Send to

Choose Destination
Oncogene. 2000 Oct 12;19(43):4970-8.

Estrogen receptor beta acts as a dominant regulator of estrogen signaling.

Author information

Department of Medical Nutrition, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden.


The physiological effects of estrogens are mediated by two intracellular transcription factors, the estrogen receptors (ERs), that regulate transcription of target genes through binding to specific DNA target sequences. Here we describe alterations in cellular responses to different ER agonists and to the anti-estrogenic compound tamoxifen resulting from co-expression of the two ERs in transient co-transfection experiments. Our results demonstrate that ERbeta can act as a negative or positive dominant regulator of ER activity. This is manifested through reduced transcriptional activity at low concentrations of estradiol (E2); increased antagonistic effects of tamoxifen on E2 stimulated activity; and enhanced agonistic action of the phytoestrogenic compound genistein. Furthermore, using chimeric proteins lacking the N-terminal activation function 1 (AF-1), we show that the differential responses of ERalpha and ERbeta to different agonists and antagonists are primarily dictated by inherent differences in the C-terminal ligand-binding domains of the receptors, whereas the magnitude of transcriptional activity is influenced by ERalpha AF-1, but not ERbeta AF-1. The ERalpha AF-1 activity appears to be modulated upon co-expression of both ERs. The alterations in transcriptional activity resulting from co-expression of ERalpha and ERbeta are probably due to the formation of alpha/beta heterodimeric complexes. This study demonstrates that co-localization and subsequent heterodimerization of ERalpha and ERbeta may result in receptor activity distinct from that of ER homodimers.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center