Send to

Choose Destination
J Biol Chem. 2000 Dec 22;275(51):39803-6.

Mints as adaptors. Direct binding to neurexins and recruitment of munc18.

Author information

Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.


Mint1 (X11/human Lin-10) and Mint2 are neuronal adaptor proteins that bind to Munc18-1 (n/rb-sec1), a protein essential for synaptic vesicle exocytosis. Mint1 has previously been characterized in a complex with CASK, another adaptor protein that in turn interacts with neurexins. Neurexins are neuron-specific cell surface proteins that act as receptors for the excitatory neurotoxin alpha-latrotoxin. Hence, one possible function for Mint1 is to mediate the recruitment of Munc18 to neurexins. In agreement with this hypothesis, we now show that the cytoplasmic tail of neurexins captures Munc18 via a multiprotein complex that involves Mint1. Furthermore, we demonstrate that both Mint1 and Mint2 can directly bind to neurexins in a PDZ domain-mediated interaction. Various Mint and/or CASK-containing complexes can be assembled on neurexins, and we demonstrate that Mint1 can bind to Munc18 and CASK simultaneously. Our data support a model whereby one of the functions of Mints is to localize the vesicle fusion protein Munc18 to those sites at the plasma membrane that are defined by neurexins, presumably in the vicinity of points of exocytosis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center