Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jan 5;276(1):624-8.

Erythrocyte water permeability and renal function in double knockout mice lacking aquaporin-1 and aquaporin-3.

Author information

Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, 94143-0521, USA.


Aquaporin (AQP) water channel AQP3 has been proposed to be the major glycerol and non-AQP1 water transporter in erythrocytes. AQP1 and AQP3 are also expressed in the kidney where their deletion in mice produces distinct forms of nephrogenic diabetes insipidus. Here AQP1/AQP3 double knockout mice were generated and analyzed to investigate the functional role of AQP3 in erythrocytes and kidneys. 53 double knockout mice were born out of 756 pups from breeding double heterozygous mice. The double knockout mice had reduced survival and impaired growth compared with the single knockout mice. Erythrocyte water permeability was 7-fold reduced by AQP1 deletion but not further reduced in AQP1/AQP3 null mice. AQP3 deletion did not affect erythrocyte glycerol permeability or its inhibition by phloretin. Daily urine output in AQP1/AQP3 double knockout mice (15 ml) was 9-fold greater than in wild-type mice, and urine osmolality (194 mosm) was 8.4-fold reduced. The mice remained polyuric after DDAVP administration or water deprivation. The renal medulla in most AQP1/AQP3 null mice by age 4 weeks was atrophic and fluid-filled due to the severe polyuria and hydronephrosis. Our data provide direct evidence that AQP3 is not functionally important in erythrocyte water or glycerol permeability. The renal function studies indicate independent roles of AQP1 and AQP3 in countercurrent exchange and collecting duct osmotic equilibration, respectively.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center