Format

Send to

Choose Destination
J Allergy Clin Immunol. 2000 Oct;106(4):713-22.

Substance P and its receptor neurokinin 1 expression in asthmatic airways.

Author information

1
Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, CO 80206, USA.

Abstract

BACKGROUND:

Neural mechanisms have been suggested to contribute to the pathogenesis of chronic asthma. The expression of neuropeptides such as substance P may be regulated by infectious pathogens, including Mycoplasma species. In contrast to substance P, the substance P receptor neurokinin 1 has not been examined at the protein level in asthmatic airways.

OBJECTIVE:

This study evaluated substance P and neurokinin 1 protein expression and mucus content in endobronchial biopsy specimens from normal control subjects and asthmatic subjects. Detection of Mycoplasma pneumoniae was performed in both biopsy and bronchoalveolar lavage specimens.

METHODS:

Biopsy specimens were collected from 10 normal control subjects and 18 asthmatic subjects before and after a 6-week treatment with a macrolide antibiotic (n = 11) or placebo (n = 7) and were stained for substance P, neurokinin 1, and mucus. M pneumoniae was evaluated by PCR.

RESULTS:

At baseline, compared with normal control subjects, asthmatic subjects demonstrated increased expression of substance P and neurokinin 1 and mucus content in the airway epithelium. Epithelial mucus content correlated with epithelial substance P expression (r (s) = 0.45, P =.04) and FEV(1) percent predicted (r (s) = -0.51, P =.019). After antibiotic treatment, both epithelial substance P and neurokinin 1 expression were significantly reduced in asthmatic subjects. M pneumoniae was found in 8 of 18 asthmatic subjects. Asthmatic subjects with M pneumoniae, compared with those without M pneumoniae, showed higher baseline epithelial neurokinin 1 expression, which was significantly reduced after antibiotic treatment (P =.02).

CONCLUSION:

Our data suggest that abnormalities in neural mechanisms may exist in the epithelium of asthmatic airways, and M pneumoniae is possibly involved in this process. Antibiotic intervention may be effective in the treatment of asthma partly through the downregulation of the neurogenic process.

PMID:
11031342
DOI:
10.1067/mai.2000.109829
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center