Send to

Choose Destination
J Bacteriol. 2000 Nov;182(21):6091-8.

The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin.

Author information

Department of Microbiology & Immunology, University of Leicester, Leicester LE1 9HN, United Kingdom.


Norepinephrine stimulates the growth of a range of bacterial species in nutritionally poor SAPI minimal salts medium containing 30% serum. Addition of size-fractionated serum components to SAPI medium indicated that transferrin was required for norepinephrine stimulation of growth of Escherichia coli. Since bacteriostasis by serum is primarily due to the iron-withholding capacity of transferrin, we considered the possibility that norepinephrine can overcome this effect by supplying transferrin-bound iron for growth. Incubation with concentrations of norepinephrine that stimulated bacterial growth in serum-SAPI medium resulted in loss of bound iron from iron-saturated transferrin, as indicated by the appearance of monoferric and apo- isoforms upon electrophoresis in denaturing gels. Norepinephrine also caused the loss of iron from lactoferrin. The pharmacologically inactive metabolite norepinephrine 3-O-sulfate, by contrast, did not result in iron loss from transferrin or lactoferrin and did not stimulate bacterial growth in serum-SAPI medium. Norepinephrine formed stable complexes with transferrin, lactoferrin, and serum albumin. Norepinephrine-transferrin and norepinephrine-lactoferrin complexes, but not norepinephrine-apotransferrin or norepinephrine-albumin complexes, stimulated bacterial growth in serum-SAPI medium in the absence of additional norepinephrine. Norepinephrine-stimulated growth in medium containing (55)Fe complexed with transferrin or lactoferrin resulted in uptake of radioactivity by bacterial cells. Moreover, norepinephrine-stimulated growth in medium containing [(3)H]norepinephrine indicated concomitant uptake of norepinephrine. In each case, addition of excess iron did not affect growth but significantly reduced levels of radioactivity ((55)Fe or (3)H) associated with bacterial cells. A role for catecholamine-mediated iron supply in the pathophysiology of infectious diseases is proposed.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center