Send to

Choose Destination
Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1342-7.

Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung.

Author information

Departments of Surgery, Pediatrics, Biostatistics, Medicine, and Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA.


Antioxidants, such as glutathione peroxidases (GPxs), in epithelial lining fluid (ELF) protect against health effects of oxidant pollutants, which includes O(3) or NO(2). We hypothesized that GPxs concentration in ELF is responsive to O(3) or NO(2) exposure. Subjects underwent two 4-h exposures to O(3) (0.22 ppm) and one to air. In another experiment, subjects underwent 3-h exposures to air and NO(2) (0.6 and 1.5 ppm). Bronchoalveolar lavage (BAL) was performed immediately or 18 h after O(3) exposure and 3.5 h after each NO(2) exposure. GPx activity and extracellular GPx (eGPx) protein concentrations were determined in ELF, and their relationships to markers of lung function, inflammation, and epithelial permeability were examined. Although the total amounts were not changed, basal (air) GPx activity (223.6 +/- 24.4 mU/ml), basal eGPx protein concentration (2.62 +/- 0.25 microg/ml), and basal ELF dilution factor (152.3 +/- 8.4) decreased 40% immediately after O(3) exposure and remained 30% decreased 18 h after exposure (p = 0.0001). No effect of NO(2) exposure on GPxs concentration was detected. There was an inverse correlation between baseline ELF eGPx protein concentration and the change in PMN 18 h after O(3) exposure (p = 0.04). Thus, O(3), a strong oxidant, decreases both GPx activity and eGPx protein in ELF, whereas NO(2), a weaker oxidant, does not. eGPx in ELF may protect against O(3)-induced airway inflammation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center