Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Oct 15;20(20):7682-90.

Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR.

Author information

1
Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037, USA.

Abstract

Genes that control the specification and differentiation of the functionally specialized areas of the mammalian neocortex are likely expressed across the developing neocortex in graded or restricted patterns. To search for such genes we have performed a PCR-based differential display screen using RNAs from rostral neocortex, which included the primary motor area, and caudal neocortex, which included the primary visual area, of embryonic day 16 rats. We identified 82 differentially expressed gene fragments. Secondary screening by in situ hybridization confirmed that five fragments, representing four genes, are differentially expressed across developing rat neocortex. Two of the genes, chick ovalbumin upstream transcription factor I (COUP-TFI) and close homolog of L1 (CHL1), have been cloned previously, but their differential expression in cortex has not been reported. Sequences from the other two fragments suggest that they represent novel genes. The expression patterns include graded, restricted, and discontinuous expression with abrupt borders that might correlate with those of areas. The differential expression patterns of all four genes are established before the arrival of thalamocortical afferents, suggesting that they are independent of thalamic influence, and could direct or reflect arealization. In addition, COUP-TFI and CHL1 exhibit dynamic expression patterns that undergo substantial changes after thalamocortical afferents invade the cortical plate, suggesting that thalamic axons may influence their later expression. Postnatally, COUP-TFI is most prominently expressed in layer 4, in both rats and mice, and CHL1 is expressed in layer 5. COUP-TFI expression in cortex, and in ventral telencephalon and dorsal thalamus, suggests several possible causes for the loss of layer 4 neurons and the reduced thalamocortical projection reported in COUP-TFI knock-out mice.

PMID:
11027229
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center