Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2000 Nov 15;60(10):1417-24.

Pharmacology of the receptors for the phorbol ester tumor promoters: multiple receptors with different biochemical properties.

Author information

1
Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, 19104-6160, USA. marcelo@spirit.gcrc.upenn.edu

Abstract

The phorbol ester tumor promoters and related analogs are widely used as potent activators of protein kinase C (PKC). The phorbol esters mimic the action of the lipid second messenger diacylglycerol (DAG). The aim of this commentary is to highlight a series of important and controversial concepts in the pharmacology and regulation of phorbol ester receptors. First, phorbol ester analogs have marked differences in their biological properties. This may be related to a differential regulation of PKC isozymes by distinct analogs. Moreover, it seems that marked differences exist in the ligand recognition properties of the C1 domains, the phorbol ester/DAG binding sites in PKC isozymes. Second, an emerging theme that we discuss here is that phorbol esters also target receptors unrelated to PKC isozymes, a concept that has been largely ignored. These novel receptors lacking kinase activity include chimaerins (a family of Rac-GTPase-activating proteins), RasGRP (a Ras exchange factor), and Unc-13/Munc-13 (a family of proteins involved in exocytosis). Unlike the classical and novel PKCs, these "non-kinase" phorbol ester receptors possess a single copy of the C1 domain. Interestingly, each receptor class has unique pharmacological properties and biochemical regulation. Lastly, it is well established that phorbol esters and related analogs can translocate each receptor to different intracellular compartments. The differential pharmacological properties of the phorbol ester receptors can be exploited to generate specific agonists and antagonists that will be helpful tools to dissect their cellular function.

PMID:
11020443
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center