Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2000 Oct 1;528 Pt 1:221-6.

Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle.

Author information

1
Copenhagen Muscle Research Centre, Department of Human Physiology, University of Copenhagen, Denmark. jwojtaszewski@aki.ku.dk

Abstract

1. 5'-AMP-activated protein kinase (AMPK) has been suggested to play a key role in the regulation of metabolism in skeletal muscle. AMPK is activated in treadmill-exercised and electrically stimulated rodent muscles. Whether AMPK is activated during exercise in humans is unknown. 2. We investigated the degree of activation and deactivation of alpha-isoforms of AMPK during and after exercise. Healthy human subjects performed bicycle exercise on two separate occasions at either a low ( approximately 50% maximum rate of O2 uptake (VO2,max) for 90 min) or a high ( approximately 75% VO2,max for 60 min) intensity. Biopsies from the vastus lateralis muscle were obtained before and immediately after exercise, and after 3 h of recovery. 3. We observed a 3- to 4-fold activation of the alpha2-AMPK isoform immediately after high intensity exercise, whereas no activation was observed after low intensity exercise. The activation of alpha2-AMPK was totally reversed 3 h after exercise. In contrast, alpha1-AMPK was not activated during either of the two exercise trials. 4. The in vitro AMP dependency of alpha2-AMPK was significantly greater than that of alpha1-AMPK ( approximately 3- vs. approximately 2-fold). 5. We conclude that in humans activation of alpha2-AMPK during exercise is dependent upon exercise intensity. The stable activation of alpha2-AMPK, presumably due to the activation of an upstream AMPK kinase, is compatible with a role for this kinase complex in the regulation of skeletal muscle metabolism during exercise, whereas the lack of stable alpha1-AMPK activation makes this kinase complex a less likely candidate.

Comment in

PMID:
11018120
PMCID:
PMC2270117
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center